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Abstract
This paper theoretically estimates the dynamic pile–soil interaction and the
group efficiency factor for pile group in layered soil through energy-based
method. The vertical dynamic interaction of partially embedded single piles and
their surrounding layered soil is analytically deduced fromHamilton’s principle.
Combinedwith a series of numerical simulations, the soil attenuation factor from
energymethod ismodified for adapting to thewave speed variation in various lay-
ers. Then, the pile-to-pile interaction factor is directly solved with the help of the
transfer-matrix method. The dynamic governing equation of pile group with an
elevated rigid cap is established by superposing the pile-to-pile interaction fac-
tors. Finally, the dynamic impedance of pile group is obtained and derived into
a group efficiency factor. Compared with the plane strain method, this present
method can produce a more suitable soil attenuation factor and a dynamic inter-
action factor at low frequency range, which is exploited for practical engineering
design. The effects of subsoil layer, subsoil layer, and unembedded pile segment
on group efficiency factor are investigated. The results show that the real part of
group efficiency factor decreases at high frequency range for a small pile spacing,
which may be detriment to the pile group capacity. Besides that, the combined
effects of unembedded segment and weak surface soil on group efficiency factor
are highlighted.
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1 INTRODUCTION

Pile foundations are widely used for supporting superstructures such as bridge piers, high-rise buildings, transmis-
sion towers because of their merits of high capacity and good serviceability in various geological environments.1–6
Estimating the dynamic performance under the loads from traffic vehicles,7 earthquake action,8 vibrating machine,
wind, and flood is often a challenging task due to its complex frequency-dependency.9–12 In addition to the engi-
neering design, dynamic impedance knowledge of piles is also fundamental to the scour detection of bridges using
vibration-based method.13–17 For pile groups subjected to vertical dynamic loads, each pile interacts with the other
piles through soil reaction. Rational estimations for pile–soil interaction and pile-to-pile interaction have attracted
many researchers’ attention.18–21 Nowadays, four types of method have been developed to obtain both soil attenuation
factor and dynamic interaction factor between adjacent piles: (a) the formulation based on Voigt model22–24; (b) the
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formulation from plane stain method18,25–28; (c) analytical methods based on continuum model20,29,30; (d) numerical
approaches based on the finite element method (FEM), the difference method, the boundary element method or dis-
crete element method.21,31–35 The numerical calculation in dynamic domain often requires a cumbersome discretization
treatment,36,37 and significant running time and computer resources, which usually means high cost in engineering
design. The spring and damping coefficient in Voigt models are empirical and have to be calibrated before application.38
For layered soil, Voigt model is not convenient because a large number of experiments have to be done to obtain sat-
isfactory coefficients for each layer. The soil attenuation factor from plane stain method is dependent with soil depth
and cannot reflect the influences of pile geometric and soil stiffness variation. Besides that, plane stain method tends
to overestimate the pile–soil interaction at low frequencies because it neglects the stress gradient in vertical direction.39
According to Kanellopoulos and Gazetas,21 inelasticity would drastically reduce the vertical interaction factors. Thus,
the aforementioned overestimation may be not safe. Generally, continuum-based method can produce accurate dynamic
responses of pile–soil system. Integral transformation and energy method are two types of common techniques to
solve the dynamic governing equations.28,40–45 Using continuum-based method, the dynamic impedance of single piles
that are right resting on rigid rock, floating in homogeneous soil, installed in nonhomogeneous soil are accurately
formulated.46
However, few of the existing studies compare the soil attenuation factor from continuum-based method, plane strain

method and numerical method.47 Furthermore, most of the continuum-based studies on the vertical dynamic response of
pile group simplify the tip condition as end-bearing to produce a rigorous solution.30,43 Moreover, the conventional energy-
based method assumes that the soil attenuation factor is depth-independent in vertically loaded pile–soil system.42,48–50
The feasibility of energy method for the dynamic pile-to-pile interaction in layered soil remains justified and deserves
further study due to complex wave diffraction. Also, the parameter studies on variation of work efficiency against load
frequency for floating pile group are far from sufficient.
The objective of this study is twofold. Firstly, a theoretical method that can amend/avoid the overestimation to

dynamic pile–soil interaction from plane strain method is developed by combining variational analysis and numeri-
cal simulations. The present method accounts for the wave propagation difference in adjacent soil layers by modifying
the soil attenuation factor produced from energy method. The pile-to-pile interaction factor is directly deduced in
the form of an explicit matrix expression without introducing special diffraction factor due to pile rigidity or “rein-
forcing” effect.18 Dynamic responses of pile group are obtained with the aid of superposing interaction factors.51,52
Secondly, based on the calculation results, the effects of following main parameters involving layered soil profile
on the group efficiency factor of floating pile group are examined: subsoil layer stiffness, stiffness and thickness
of surface layer, and length of unembedded pile segment. This study can provide a possible reference to explore
a continuum-based formulation for dynamic soil–structure interaction considering the effects of nonhomogeneous
soil.

2 PROBLEMDEFINITION

The problem considered here is the harmonic vibration of floating pile group partially embedded in layered soil overlying
compressible or rigid rock as illustrated in Figure 1A. For solving the pile group problem in Figure 1A, two elementary
problems for soil attenuation factor and pile-to-pile interaction factor are illustrated in Figure 1B,C. All the piles under
the same cap have identical geometrical and mechanical properties: pile length L, circular diameter d= 2rp, cross-section
area Ap, Young’s modulus 𝐸p, and density 𝜌p. The surrounding soil has a total of N layers in which M layers are around
the pile rod and the rest N-M layers are below the pile tip.
The pile is routinely treated as a linearly elastic rod and each soil layer is treated as a homogeneous, isotropic, and

viscoelastic material. Since this study mainly focuses on the small-strain mechanical behavior of pile–soil system, the
contact between piles and soil is assumed to be perfect without slippage or separation at pile–soil interface. The soil
damping is considered as hysteretic type, that is, frequency independent. The basic properties for each ith soil layer is:
Young’smodulus𝐸si,mass density𝜌si, Poisson’s ratio of 𝜐si, and damping ratio 𝜅𝑖 . In order to simplify the dynamic analysis,
the complex forms of Young’s modulus, shear modulus, and Lame’s constant are introduced as 𝐸∗

si
= 𝐸si(1 + 2i𝜅i),𝐺∗

si
=

𝐸∗
si
∕[2(1 + 𝜐si)], and 𝜆∗

si
= 𝐸∗

si
𝜐si∕[(1 + 𝜐si)(1 − 2𝜐si)] respectively. The pile cap is excited by a vertical force 𝐹(𝑡) = 𝐹0𝑒

jωt,
where 𝐹0 denotes the amplitude, 𝜔 represents the force circular frequency, t and j denote time and the imaginary unit,
respectively.
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(A) (B) (C)

F IGURE 1 Partially embedded floating piles in layered soil. (A) Pile group. (B) Single pile model for soil attenuation factor. (C)
Double-pile system for pile-to-pile interaction factor.

(A) (B)

F IGURE 2 Comparisons of soil attenuation factor in homogenous soil (s = 2d). Vs varies with Ep/Es ratio. (A) Amplitude. (B) Phase.

3 THEORETICAL FRAMEWORK AND SOLVING PROCESS

3.1 Vibration of single pile and its surrounding soil

3.1.1 Displacement model and energy function for pile–soil system

Solving the dynamic impedance of single pile and corresponding soil attenuation factor is essential for the responses of
pile group. As shown in Figure 1B, the soil column beneath the pile tip is modeled by a fictitious soil pile to establish
a continuum-based model. The radial displacement in the fictitious soil pile is neglected. For the situation of vertical
vibration, the previous studies40,42 have concluded that the radial displacement and circumferential displacement of a
pile–soil system play a trivial role in its vertical responses and are neglected in this study. The displacement pattern on the
pile cross section is assumed to be uniform and thus the pile becomes one-dimensional shaft. Because no soil resistance
acts on the unembedded pile segment, it can be inferred that the pile–soil interaction is exclusively determined by the
embedded segment. Previous studies20,46,53 have confirmed that the soil displacement 𝑤s(𝑟, 𝑧, 𝑡) can be expressed as the
product of two individual functions: 𝑤(𝑧, 𝑡) and 𝜙(𝑟):

𝑤s(𝑟, 𝑧, 𝑡) = 𝑤(𝑧, 𝑡)𝜙(𝑟) (1)
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where 𝑤(𝑧, 𝑡) denotes the axial displacement of embedded pile shaft 𝑤p(𝑧, 𝑡) when 𝐻0 ≤ 𝑧 ≤ 𝐿; and 𝑤(𝑧, 𝑡) denotes the
vertical displacement of the fictitious soil pile 𝑤s(𝑧, 𝑡) when 𝐿 < 𝑧 ≤ 𝐻N, which is given by:

𝑤(𝑧, 𝑡)=

⎧⎪⎨⎪⎩
𝑤p(𝑧, 𝑡), (𝐻0 ≤ 𝑧 ≤ 𝐿)

𝑤s(𝑧, 𝑡), (𝑧 > 𝐿)
(2)

The function 𝜙(𝑟) of radial coordinate r in Equation (1) is a dimensionless value that represents the attenuation factor
of soil displacement with respect to the axial displacement 𝑤p(𝑧, 𝑡) of the loaded pile shaft. Naturally, 𝜙(𝑟)has following
boundary condition:

𝜙(𝑟) =

⎧⎪⎨⎪⎩
1, 0 ≤ 𝑟 ≤ 𝑟p

0,𝑟 → ∞
(3)

For a vibrating pile–soil system, the total energy (ℜ) should include three types of components: the kinetic energy T,
the potential energy U, and the external workW. The integral forms of those energy components in all soil layers and the
pile shaft (including the fictitious one) can be given by the following:

𝑇 = 𝑇unembeddedpile + 𝑇embeddedpile + 𝑇soil

=

𝐻0

∫
0

1

2
𝜌p𝐴p

(
𝜕𝑤pi

𝜕𝑡

)2

𝑑𝑧 +

𝑀∑
𝑖=1

⎡⎢⎢⎢⎣
𝐻i

∫
𝐻i−1

1

2
𝜌p𝐴p

(
𝜕𝑤pi

𝜕𝑡

)2

𝑑𝑧 +

𝐻i

∫
𝐻i−1

2𝜋

∫
0

∞

∫
𝑟p

1

2
𝜌si𝜙

2

(
𝜕𝑤pi

𝜕𝑡

)2

𝑟𝑑𝑟𝑑𝜃d𝑧

⎤⎥⎥⎥⎦
+

𝑁∑
𝑗=M+1

⎡⎢⎢⎢⎣
𝐻j

∫
𝐻j−1

1

2
𝜌sj𝐴p

(
𝜕𝑤sj

𝜕𝑡

)2

𝑑𝑧 +

𝐻j

∫
𝐻j−1

2𝜋

∫
0

∞

∫
𝑟p

1

2
𝜌sj𝜙

2

(
𝜕𝑤sj

𝜕𝑡

)2

𝑟𝑑𝑟𝑑𝜃d𝑧

⎤⎥⎥⎥⎦ (4)

where H0 is the length of unembedded pile segment and Hi is the depth of the ith soil layer (subscripts i and j indicate
each layer for displacement wpi and wsj).

U = 𝑈unembeddedpile + 𝑈embeddedpile + 𝑈soil

=

𝐻0

∫
0

1

2
𝐸p𝐴p

(
𝜕𝑤pi

𝜕𝑧

)2

𝑑𝑧 +

𝑀∑
𝑖=1

⎡⎢⎢⎢⎣
𝐻i

∫
𝐻i−1

1

2
𝐸p𝐴p

(
𝜕𝑤pi

𝜕𝑧

)2

𝑑𝑧 +

𝐻i

∫
𝐻i−1

2𝜋

∫
0

∞

∫
𝑟p

1

2

(
(𝜆∗𝑠 + 2𝐺∗

𝑠 ) 𝜙
2

(
𝜕𝑤pi

𝜕𝑧

)2

+ 𝐺∗
s 𝑤

2
pi

(
𝜕𝜙(𝑟)

𝜕𝑟

)2
)
𝑟𝑑𝑟𝑑𝜃𝑑𝑧

⎤⎥⎥⎥⎦
+

𝑁∑
𝑗=𝑀+1

⎡⎢⎢⎢⎣
𝐻j

∫
𝐻j−1

1

2
(𝜆∗𝑠 + 2𝐺∗

𝑠 ) 𝐴

(
𝜕𝑤si

𝜕𝑧

)2

𝑑𝑧 +

𝐻j

∫
𝐻j−1

2𝜋

∫
0

∞

∫
0

1

2

(
(𝜆∗𝑠 + 2𝐺∗

𝑠 )

(
𝜙
𝜕𝑤si

𝜕𝑧

)2

+ 𝐺∗
s 𝑤

2
si

(
𝜕𝜙(𝑟)

𝜕𝑟

)2
)
𝑟𝑑𝑟𝑑𝜃𝑑𝑧

⎤⎥⎥⎥⎦ (5)

𝑊 =

𝑡2

∫
𝑡1

𝐹(𝑡)𝑤(𝑧, 𝑡) |𝑧=0 𝑑𝑡 (6)

Based on the principle of least action in continuum, a mechanical system approaches its equilibrium status when the
variation of the energy functionℜ during the period from t1 to t2 reaches its minimal value, which yields:

𝛿ℜ =

𝑡2

∫
𝑡1

(𝛿𝑇 − 𝛿𝑈+𝛿𝑊)𝑑𝑡 = 0 (7)

where 𝛿(∗) denotes the variational operator.
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Substituting Equation (4), Equation (5), Equation (6) into Equation (7) and then applying the hormonic vibration
condition 𝑤(𝑧, 𝑡) = 𝑤(𝑧)eiωt produces the following equation:

𝛿ℜ =

𝑡2

∫
𝑡1

𝐻0

∫
0

1

2
𝜌p𝐴p

(
𝜕𝑤pi

𝜕𝑡

)2

𝑑𝑧𝑑𝑡 +

𝑡2

∫
𝑡1

𝐻0

∫
0

1

2
𝐸p𝐴p

(
𝜕𝑤pi

𝜕𝑧

)2

𝑑𝑧𝑑𝑡

+

𝑀∑
𝑖=1

⎧⎪⎨⎪⎩𝜔
2𝜌p𝐴p

𝑡2

∫
𝑡1

𝐻i

∫
𝐻i−1

𝑤p𝛿𝑤p𝑑𝑡𝑑𝑧 + 2𝜋𝜌s𝜔
2

𝑡2

∫
𝑡1

𝐻i

∫
𝐻i−1

∞

∫
𝑟p

𝜙2𝑤p𝛿𝑤p𝑟𝑑𝑟d𝑧𝑑𝑡 + 2𝜋𝜌s𝜔
2

𝑡2

∫
𝑡1

𝐻i

∫
𝐻i−1

∞

∫
𝑟p

𝑟𝜙𝑤2
p𝛿𝜙𝑑𝑟d𝑧𝑑𝑡

⎫⎪⎬⎪⎭
+

𝑀∑
𝑖=1

⎧⎪⎨⎪⎩−𝐸p𝐴p

𝑡2

∫
𝑡1

⎛⎜⎜⎝
𝜕𝑤p

𝜕𝑧
𝛿𝑤p

|||𝐻i

𝐻i−1
−

𝐻i

∫
𝐻i−1

𝜕2𝑤p

𝜕𝑧2
𝛿𝑤p𝑑𝑧

⎞⎟⎟⎠𝑑𝑡−𝜋
(
𝜆∗
si
+ 2𝐺∗

si

) 𝑡2

∫
𝑡1

×

⎡⎢⎢⎢⎣2
∞

∫
𝑟p

(
𝜕𝑤p

𝜕𝑧

)
𝜙2𝑟𝛿𝑤p

|||𝐻i

𝐻i−1
−2

𝐿

∫
0

∞

∫
𝑟p

𝑟𝜙2

(
𝜕2𝑤p

𝜕𝑧2

)
𝛿𝑤p𝑑𝑟𝑑𝑧 + 2

𝐿

∫
0

∞

∫
𝑟p

𝜙

(
𝜕𝑤p

𝜕𝑧

)2

𝛿𝜙𝑟𝑑𝑟𝑑𝑧

⎤⎥⎥⎥⎦𝑑𝑡

+

𝑁∑
𝑗=M+1

⎧⎪⎨⎪⎩𝜔
2𝜌s𝐴p

𝑡2

∫
𝑡1

∞

∫
𝐿

𝑤𝑠𝛿𝑤𝑠𝑑𝑡𝑑𝑧 +2𝜋 𝑟ℎ𝑜s𝜔
2

𝑡2

∫
𝑡1

𝐻j

∫
𝐻j−1

∞

∫
𝑟p

𝑟𝜙2𝑤𝑠𝛿𝑤𝑠𝑑𝑟d𝑧𝑑𝑡 + 2𝜋𝜌s𝜔
2

𝑡2

∫
𝑡1

𝐻j

∫
𝐻j−1

∞

∫
𝑟p

𝑟𝜙𝑤2
s 𝛿𝜙𝑑𝑟d𝑧𝑑𝑡

⎫⎪⎬⎪⎭
+

𝑁∑
𝑗=𝑀+1

⎧⎪⎨⎪⎩− (𝜆∗𝑠 + 2𝐺∗
𝑠 ) 𝐴p

𝑡2

∫
𝑡1

⎛⎜⎜⎝
𝜕𝑤𝑠
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𝛿𝑤𝑠

||||𝐻j

𝐻j−1
−

𝐿

∫
0

𝜕2𝑤𝑠

𝜕𝑧2
𝛿𝑤𝑠𝑑𝑧

⎞⎟⎟⎠𝑑𝑡−𝜋
(
𝜆∗
sj
+ 2𝐺∗

sj

)

×

𝑡2

∫
𝑡1

⎡⎢⎢⎢⎣2
∞

∫
𝑟p

(
𝜕𝑤𝑠

𝜕𝑧

)
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−2

∞

∫
𝑟p

∞

∫
𝐿

𝑟𝜙2
(
𝜕2𝑤𝑠

𝜕𝑧2

)
𝛿𝑤𝑠𝑑𝑧𝑑𝑟 + 2

𝐻j

∫
𝐻j−1

∞

∫
𝑟p

𝑟𝜙

(
𝜕𝑤𝑠

𝜕𝑧
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𝛿𝜙𝑑𝑟𝑑𝑧

⎤⎥⎥⎥⎦𝑑𝑡
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∞
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𝜕𝜙

𝜕𝑟

)2

𝑤p𝑟𝛿𝑤p𝑑𝑟𝑑𝑧 + 2

𝐻j

∫
𝐻j−1

𝑤2
p

𝜕𝜙

𝜕𝑟
𝑟𝛿𝜙𝑑𝑧

|||∞𝑟p − 2

𝐻j

∫
𝐻j−1

∞

∫
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𝑤2
p

(
𝑟
𝜕2𝜙

𝜕𝑟2
+

𝜕𝜙

𝜕𝑟

)
𝛿𝜙𝑑𝑟𝑑𝑧

⎤⎥⎥⎥⎦𝑑𝑡
⎫⎪⎬⎪⎭

−𝜋𝐺∗
s

𝑡2

∫
𝑡1
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𝐻j

∫
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𝑤2
s

(
𝜕𝜙

𝜕𝑧

)
𝑟𝛿𝜙𝑑𝑧

|||∞𝑟p −2

∞

∫
𝑟p

𝐻j

∫
𝐻j−1

𝑤2
s

(
𝑟
𝜕2𝜙

𝜕𝑟2
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𝜕𝜙
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𝛿𝜙𝑑𝑧𝑑𝑟 + 2

𝐻j

∫
𝐻j−1

∞
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𝑟p

𝑤s

(
𝜕𝜙

𝜕𝑟

)2

𝛿𝑤s𝑟𝑑𝑟𝑑𝑧

⎤⎥⎥⎥⎦𝑑𝑡
⎫⎪⎬⎪⎭

= 0 (8)

3.1.2 Pile response

Simplifying Equation (8) yields the following form:

𝑓0(𝑤p0)𝛿𝑤p0 +

M∑
i=1

𝑓i(𝑤pi)𝛿𝑤pi +

N∑
j=M+1

𝑓j(𝑤sj)𝛿𝑤sj + 𝑔(𝜙)𝛿𝜙 = 0 (9)



1958 QU et al.

Since 𝛿𝑤p0, 𝛿𝑤pi,𝛿𝑤sj, and 𝛿𝜙 are basically independent functions with each other, the prerequisite for Equation (9)
is that the corresponding four coefficients 𝑓0, 𝑓i, 𝑓j,and 𝑔 before the variation functions should always equal zero at any
condition. Therefore, the dynamic governing equations of the unembedded pile segment, embedded segment, and the
fictitious soil pile can be respectively expressed as:

𝑓0 = 𝐸p𝐴
𝜕2𝑤p0

𝜕𝑧2
+ 𝜌p𝐴𝜔

2𝑤p0= 0,0 ≤ 𝑧 < 𝐻0 (10a)

𝑓i =
(
𝐸p𝐴+2𝑡i

) 𝜕2𝑤pi

𝜕𝑧2
−

[
𝑘i − (𝛼i + 𝜌p𝐴)𝜔

2
]
𝑤pi= 0,1 ≤ 𝑖 ≤ 𝑀 (10b)

𝑓j =
[(

𝜆∗
sj
+ 2𝐺∗

sj

)
𝐴+2𝑡j

] 𝜕2𝑤sj

𝜕𝑧2
−

[
𝑘j − (𝛼j + 𝜌sj𝐴)𝜔

2
]
𝑤sj= 0,𝑀 < 𝑗 ≤ 𝑁 (10c)

For the sake of simplicity, the terms of 𝜆∗
sj
+ 2𝐺∗

sj
(𝑀 < 𝑗 ≤ 𝑁) in Equation (10c),𝐸p in Equation (10a) and Equation (10b)

are expressed in the form of equivalent elastic modulus 𝐸i(0 ≤ 𝑖 ≤ 𝑁), which is given by:

𝐸i=

⎧⎪⎨⎪⎩
𝐸p, (0 ≤ 𝑖 ≤ 𝑀)

𝜆∗
si
+ 2𝐺∗

si
, (𝑀 < 𝑖 ≤ 𝑁)

(11)

After employing similar transformations to 𝑘i,𝑘j, 𝛼i, 𝛼j, 𝜌p, and 𝜌sj, along with letting 𝑤pi = 𝑤sj, (𝑀 < 𝑖 ≤ 𝑁, 𝑗 = 𝑖),
Equations (10a–10c) have the following unified expression:(

𝐸𝑖𝐴+2𝑡𝑖

) 𝜕2𝑤p𝑖

𝜕𝑧2
−

[
𝑘𝑖 − (𝛼𝑖 + 𝜌𝑖𝐴)𝜔

2
]
𝑤p𝑖= 0,0 ≤ 𝑖 ≤ 𝑁 (12)

where 𝑘𝑖 = 𝛼𝑖 = 𝑡𝑖 = 0 when 𝑖= 0, and it has the following expressions when 0 < 𝑖 ≤ 𝑁:

𝑡𝑖=𝜋
(
𝜆∗
s𝑖
+ 2𝐺∗

s𝑖

) ∞

∫
𝑟p

𝜙2𝑟𝑑𝑟 (13a)

𝛼𝑖= 2𝜋𝜌s𝑖

∞

∫
𝑟p

𝜙2𝑟𝑑𝑟 (13b)

𝑘𝑖= 2𝜋𝐺∗
s𝑖

∞

∫
𝑟p

(
𝜕𝜙

𝜕𝑟

)2

𝑟𝑑𝑟 (13c)

The general solution of Equation (12) is given by:

𝑤p𝑖(𝑧) = 𝐵𝑖𝑒
𝜆i𝑧 + 𝐶𝑖𝑒

−𝜆𝑖𝑧, (0 ≤ 𝑖 ≤ 𝑁) (14)

where

𝜆i =

√
𝑘𝑖 − (𝛼𝑖 + 𝜌𝑖𝐴)𝜔2

𝐸𝑖𝐴 + 2𝑡𝑖
(15)

The axial force 𝑄i(𝑧) in pile shaft in the ith layer is given by:

𝑄𝑖(𝑧) = −
(
𝐸𝑖𝐴 + 2𝑡𝑖

) 𝜕𝑤𝑖

𝜕𝑧
= −𝐵𝑖𝜁𝑖𝑒

𝜆𝑖𝑧 + 𝐶𝑖𝜁𝑖𝑒
−𝜆𝑖𝑧 (16)

where

𝜁𝑖=

√
[𝑘𝑖 − (𝛼𝑖 + 𝜌𝑖𝐴)𝜔2]

(
𝐸𝑖𝐴 + 2𝑡𝑖

)
(17)
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The axial displacement and force between any two adjacent layers should be identical. Consequently, the recurrence
relation for pile displacement and force between the top and bottom of ith layer can be deduced in matrix form as the
following:

⎡⎢⎢⎣
𝑤pi(𝐻i+1)

𝑄pi(𝐻i+1)

⎤⎥⎥⎦ = [𝑡]i

⎡⎢⎢⎣
𝑤pi(𝐻i)

𝑄pi(𝐻i)

⎤⎥⎥⎦ (18)

where it has:

[𝑡]i =

⎡⎢⎢⎢⎣
cosh(𝜆iΔ𝐻i) −

1

𝜆i

(
𝐸i𝐴+2𝑡i

) sinh(𝜆iΔ𝐻i)

−𝜆i

(
𝐸i𝐴 + 2𝑡i

)
sinh(𝜆iΔ𝐻i) cosh(𝜆iΔ𝐻i)

⎤⎥⎥⎥⎦ (19)

Hence the responses relationship between the pile top and the bottom of layer N (the final layer) can be obtained by
applying the matrix transfer method, which yields:

⎡⎢⎢⎣
𝑤p(𝐻N)

𝑄p(𝐻N)

⎤⎥⎥⎦ =
⎡⎢⎢⎣
𝑇1
11

𝑇1
12

𝑇1
21

𝑇1
22

⎤⎥⎥⎦
⎡⎢⎢⎣
𝑤p(0)

𝑄p(0)

⎤⎥⎥⎦ =
[
𝑇1

] ⎡⎢⎢⎣
𝑤p(0)

𝑄p(0)

⎤⎥⎥⎦ (20)

where [
𝑇1

]
=

[
𝑡1

]
N

[
𝑡1

]
N−1

…
[
𝑡1

]
2

[
𝑡1

]
1

[
𝑡1

]
0

(21)

Substituting the boundary condition of zero vertical soil displacement on the rigid rock at z = HN yields the following:

𝑤p(𝐻N) = 𝑇1
11
𝑤p(0) + 𝑇1

12
𝑄p(0) = 0 (22)

Thus the dynamic axial impedance of the partially embedded pile can be written as:

𝐾d(0) =
𝑄p(0)

𝑤p(0)
= −

𝑇1
11

𝑇1
12

(23)

3.1.3 Soil vibration and attenuation function 𝜙(𝑟)

Collecting the coefficients of 𝛿𝜙 from Equation (8) produces the following equation:

𝑔(𝜙) =
𝜕2𝜙

𝜕𝑟2
+

1

𝑟

𝜕𝜙

𝜕𝑟
−𝜓2𝜙 = 0 (24)

where

𝜓=

√
𝑛s1−𝑛s2𝜔2

𝑚s
(25)

𝑚s=

𝑁∑
𝑖=1

𝐻𝑖

∫
𝐻𝑖−1

2𝜋𝐺∗
s𝑖
𝑤2
p𝑖
𝑑𝑧 (26a)

𝑛s1 =

𝑁∑
𝑖=1

𝐻𝑖

∫
𝐻𝑖−−1

2𝜋
(
𝜆∗
s𝑖
+ 2𝐺∗

s𝑖

)(
𝜕𝑤p𝑖

𝜕𝑧

)2

𝑑𝑧 (26b)

𝑛s2 =

𝑁∑
𝑖=1

𝐻𝑖

∫
𝐻𝑖−1

2𝜋𝜌s𝑖𝑤
2
p𝑖
d𝑧 (26c)
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Solving Equation (24) and substituting the boundary conditions in Equation (3) will give the general solution of 𝜙(𝑟) as
following:

𝜙(𝑟) =
K0(𝜓𝑟)

K0(𝜓𝑟p)
(27)

where K0(∗) is the modified Bessel function of the second kind of zero order.

3.1.4 Solution technique

The pile displacement at any given depth z can be finally expressed by the soil parameters𝑘i,𝑡i,𝛼i, which rely on the dis-
placement decay function 𝜙. It is clear that 𝜙 is determined by other soil parameters𝑚s, 𝑛s1, 𝑛s2 and 𝜓 from Equation (25)
to Equation (27). An iterative procedure42 is thus applied to obtain the expected results. First, an initial empirical value of
around 1.0 is made for the parameter 𝜓 to calculate the decay function 𝜙 through Equation (27). Then the undetermined
coefficients 𝑘i,𝑡i,𝛼i, and 𝜆i can be instantly calculated through Equations (13a)–(13c) and Equation (15). The pile displace-
ment subsequently can be obtained through Equation (19) and Equation (23). Recalculating the parameters of𝑚s, 𝑛s1, 𝑛s2
through Equations (26a-c), the value of𝜓 can be updated by Equation (33). Repeating the entire process until the tolerance
between the new and old value of 𝜓is less than 10−3. Finally, the dynamic impedance of partially embedded single piles
can be calculated through Equation (23).

3.2 Dynamic interaction between adjacent piles

As shown in Figure 1C, pile 1# is loaded by a vertical harmonical excitation while pile 2# does not carry any load. In such
a double pile system, pile 1# is called the source pile and pile 2# is called the receiver pile. It is assumed that the origin
of coordinate locates on the top of loaded pile (pile 1#) and the radial distance of pile 1# from pile 2# is denoted by s. The
secondary effects of the receiver pile to the source pile are neglected in this study. Thus the vibration of ith segment for a
receiver pile (including the fictitious soil pile) obeys the following governing equation:

(
𝐸𝑖𝐴+2𝑡𝑖

) 𝜕2𝑤21,𝑖

𝜕𝑧2
+ 𝜌𝑖𝐴𝜔

2𝑤21,𝑖 −
(
𝑘𝑖 − 𝛼𝑖𝜔

2
) (

𝑤21,𝑖−𝑤𝑖

)
= 0,0 ≤ 𝑖 ≤ 𝑁 (28)

where𝑤𝑖 is the frequency-domain soil displacement of free field in the absence of receiver pile. Note that𝑤𝑖 equals to zero
when i = 0 for the unembedded pile segment. For the depth z ≥ H0 or i ≥ 1, soil displacement 𝑤i is given by:

𝑤𝑖 = 𝜙𝑖(𝑠)𝑤p𝑖(𝑧) = 𝜙𝑖(𝑠)
(
𝐵𝑖𝑒

𝜆𝑖𝑧 + 𝐶𝑖𝑒
−𝜆𝑖𝑧

)
,(1 ≤ 𝑖 ≤ 𝑁) (29)

The solution of Equation (28) can be expressed as:

𝑤21𝑖 =
𝑘i − 𝛼𝑖𝜔

2

2𝜆𝑖

(
𝐸𝑖𝐴+2𝑡𝑖

)𝜙𝑖(𝑠)𝑧 (
−𝐵𝑖𝑒

𝜆𝑖𝑧 + 𝐶𝑖𝑒
−𝜆𝑖𝑧

)
+𝐷𝑖𝑒

𝜆𝑖𝑧 + 𝐹𝑖𝑒
−𝜆𝑖𝑧 (30)

Then the axial force can be written as:

𝑄21𝑖(𝑧) = −
(
𝐸𝑖𝐴 + 2𝑡𝑖

) 𝜕𝑤21𝑖

𝜕𝑧

= −
𝑘𝑖 − 𝛼𝑖𝜔

2

2𝜆𝑖
𝜙𝑖(𝑠)

[
𝑄𝑖(𝑧)

𝜁𝑖
− 𝑧𝜆𝑖𝑤𝑖(𝑧)

]
− 𝜆𝑖𝐷𝑖

(
𝐸𝑖𝐴 + 2𝑡𝑖

)
𝑒𝜆𝑖𝑧 + 𝜆𝑖𝐹𝑖

(
𝐸𝑖𝐴 + 2𝑡𝑖

)
𝑒−𝜆𝑖𝑧

(31)

Combining Equations (14), (16), (30), and (31), the unknown coefficients 𝐷𝑖 and 𝐹𝑖 can be expressed as the function of
𝑤𝑖(𝑧), 𝑄𝑖(𝑧),𝑤21𝑖 , and 𝑄21𝑖 as following:
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𝐷𝑖 =
1

2𝜆𝑖

(
𝐸𝑖𝐴 + 2𝑡𝑖

) [
1

𝑒𝜆𝑖𝑧
𝜆𝑖

(
𝐸𝑖𝐴 + 2𝑡𝑖

)
𝑤21𝑖 −

𝑄21𝑖(𝑧)

𝑒𝜆𝑖𝑧
−

𝑘𝑖 − 𝛼𝑖𝜔
2

2𝜁𝑖𝑒
𝜆𝑖𝑧

𝜙𝑖(𝑠)

(
𝑧 +

1

𝜆𝑖

)
𝑄𝑖(𝑧) + 𝑧

𝑘𝑖 − 𝛼𝑖𝜔
2

2𝑒𝜆𝑖𝑧
𝜙𝑖(𝑠)𝑤𝑖(𝑧)

]
(32a)

𝐹𝑖 =
1

2
(
𝐸𝑖𝐴 + 2𝑡𝑖

)
𝜆

[
𝑤21𝑖𝑒

𝜆𝑖𝑧
(
𝐸𝑖𝐴 + 2𝑡𝑖

)
𝜆 + 𝑄21𝑖(𝑧)𝑒

𝜆𝑖𝑧 −
𝑘𝑖 − 𝛼𝑖𝜔

2

2𝜆𝑖
𝜙𝑖(𝑠)𝑧𝜆𝑖𝑤𝑖(𝑧)𝑒

𝜆𝑖𝑧 +

(
𝑘𝑖 − 𝛼𝑖𝜔

2

2𝜆𝑖

)
𝜙𝑖(𝑠)

{
1

𝜁𝑖
− 𝜆𝑖𝑧

1

𝜁𝑖

}
𝑄𝑖(𝑧)𝑒

𝜆𝑖𝑧

]
(32b)

Thus the recurrence relation for displacement and force between the top and bottom of the ith layer receiver pile
segment can be deduced in matrix form as the following:

⎡⎢⎢⎣
𝑤21𝑖(𝐻𝑖+1)

𝑄21(𝐻𝑖+1)

⎤⎥⎥⎦ =
[
𝑡1

]
𝑖

⎡⎢⎢⎣
𝑤21𝑖(𝐻𝑖)

𝑄21(𝐻𝑖)

⎤⎥⎥⎦ +
[
𝑡2

]
𝑖

⎡⎢⎢⎣
𝑤𝑖(𝐻𝑖)

𝑄𝑖(𝐻𝑖)

⎤⎥⎥⎦ (33)

where [𝑡1]i can refer to Equation (19), and matrix [𝑡2]iis given by:

[
𝑡2

]
𝑖
=

⎡⎢⎢⎢⎢⎢⎣
−Δ𝐻𝑖

𝑘𝑖 − 𝛼𝑖𝜔
2

2𝜆𝑖

(
𝐸𝑖𝐴+2𝑡𝑖

)𝜙𝑖(𝑠)sinℎ(𝜆𝑖Δ𝐻𝑖)
𝑘𝑖 − 𝛼𝑖𝜔

2

2𝜆𝑖𝜁𝑖

(
𝐸𝑖𝐴+2𝑡𝑖

)𝜙𝑖(𝑠)

[
−
1

𝜆
sinℎ(𝜆𝑖Δ𝐻𝑖) + Δ𝐻𝑖cosℎ(𝜆𝑖Δ𝐻𝑖)

]
𝑘𝑖 − 𝛼𝑖𝜔

2

2𝜆𝑖
𝜙i(𝑠) {sinh(𝜆𝑖Δ𝐻𝑖) + 𝜆𝑖Δ𝐻𝑖 cosh(𝜆𝑖Δ𝐻𝑖)} −

𝑘𝑖 − 𝛼𝑖𝜔
2

2𝜁𝑖
Δ𝐻𝑖𝜙𝑖(𝑠) sinh(𝜆𝑖Δ𝐻𝑖)

⎤⎥⎥⎥⎥⎥⎦
(34)

Considering the compatibility of stress and deformation at the interface of adjacent layers, the responses relationship
between the pile top and the bottom of layer N (the final soil layer) are given by:

⎡⎢⎢⎣
𝑤21(𝐿)

𝑄21(𝐿)

⎤⎥⎥⎦ =
[
𝑇1

] ⎡⎢⎢⎣
𝑤21(0)

𝑄21(0)

⎤⎥⎥⎦ +
[
𝑇2

] ⎡⎢⎢⎣
𝑤(0)

𝑄(0)

⎤⎥⎥⎦ (35)

where matrix [𝑇1] can refer to Equation (21) and matrix [𝑇2] can be calculated as:

[
𝑇2

]
=

N∑
j=1

[
𝑡1

]
N

[
𝑡1

]
N−1

…
[
𝑡1

]
j+1

[
𝑡2

]
j

[
𝑡1

]
j−1

…
[
𝑡1

]
1

[
𝑡1

]
0

(36)

The vertical soil displacement 𝑤21(𝐿)must be zero, which is given by:

𝑤21(𝐿) = 𝑇1
11
𝑤21i(0) + 𝑇1

12
𝑄21(0) + 𝑇2

11
𝑤i(0) + 𝑇2

12
𝑄i(0) = 0 (37)

The force at the top of passive pile is zero:

𝑄1(0) = 0 (38)

The force at the top of active pile is written as:

𝑄i(0) = 𝑤i(0)𝐾d(0) (39)

Substituting Equations (38) and (39) into Equation (37) yields the dynamic interaction factor as following:

𝜒21 =
𝑤21(0)

𝑤(0)
= −

(
𝑇2
11
+ 𝑇2

12
𝐾d(0)

)
𝑇1
11

(40)

3.3 Dynamic impedance of pile group

The method of superimposing dynamic pile-to-pile interaction factors has been proved to be efficient for solving the pile
group responses in small strain range.21,51 The equilibrium equations for a group ofm piles that are connected by a no-mass
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(A) (B)

F IGURE 3 Comparisons of soil attenuation factor in homogenous soil (s = 5d). Vs varies with Ep/Es ratio. (A) Amplitude. (B) Phase.

rigid cap are written as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 … 1

−1 𝛽11 𝛽12 … 𝛽1m

−1 𝛽21 𝛽22 … 𝛽2m

… … … … …

−1 𝛽m1 𝛽m2 … 𝛽mm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝑢G
𝐸p𝐴p

𝐿

𝑃1

𝑃2

…

𝑃m

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑃G

0

0

…

0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(41)

where 𝑢G is the vertical displacement of the cap; 𝑃i denote the load vertically applied on the head of ith pile and 𝑃G is the
resultant force acting on the cap; the coefficient 𝛽ij can be calculated as following:

𝛽ij=
𝐸p𝐴p

𝑘
j

d
𝐿

𝜒ij (42)

The dynamic impedance for a group of square piles is therefore expressed by:

𝑘𝐺 =
𝑃𝐺
𝑢𝐺

(43)

4 VALIDATION AND COMPARISON FOR PILES IN HOMOGENOUS SOIL

4.1 Soil attenuation factor

Figures 2 and 3 compare the soil attenuation factors for a single floating pile in a homogeneous half space obtained by three
types of method: presented energy method, finite element method (FEM), and plane strain method. Basic properties of
pile-soil systemare unified as:H0 = 0;L= 20m, rp= 0.5m, ρp= 2188 kg/m3,Ep= 25GPa; ρs= 1750 kg/m3,Es= 25GPa, υs=
0.49, 𝜅 = 0.05; Note that FEM data are obtained from the linear-elastic results in Kanellopoulos and Gazetas.21 Presented
method yields soil attenuation factor from Equation (26). The plane strain method refers Gazetas and Makris22 and is
calculated by:

𝜙(𝑠) =
H2

0
(𝜔𝑟∕𝑉s)

H2
0
(𝜔𝑟0∕𝑉s)

(44)
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(A) (B)

F IGURE 4 Comparisons of dynamic interaction factor in homogenous soil (Ep/Es = 1000). (A) Amplitude. (B) Phase.

where s is pile spacing;H2
0
(∗) is the Hankel function of the second kind of zero order and 𝑉s is the shear wave velocity in

soil. In the analysis, the non-dimensional frequency a0 is routinely used by normalizing true frequencyω byωd/Vs. When
s= 2d, Figure 2A shows that the amplitude of soil attenuation factor ϕ at Ep/Es = 1000 from FEM results is around 0.57 for
a static condition. As frequency increases from zero, the amplitude starts to increase to a peak value and then gradually
decreases in the given frequency range. The results from energymethod are very closewith that fromFEMatEp/Es = 1000.
By contrast, plane strain method overestimates the soil attenuation factor in low frequency range and gives a relationship
of continuous fall with increasing frequency. Besides that, both FEM and energy methods predict the phenomenon that
amplitude of ϕ becomes smaller as soil becomes stiffer. By contrast, plane strain method could not consider the effects of
Ep/Es on vibration attenuation of surround soil. Generally, the differences of the results between the energy method and
FEM are within acceptable accuracy in the geotechnical design even when the soil is relatively hard, for example, Ep/Es =
100 in Figure 2A. The phase results in Figure 2B have no significant difference, which indicates that all the three methods
are competent to capture the phase features of oscillating pile–soil system. In addition, Figure 2B reflects that the phase
information of the waves in surrounding soil is insusceptible to the soil stiffness for a floating pile in homogeneous soil.
When s = 5d, Figure 3A shows that energy method agrees well with the FEM in the low frequency range of a0 < 0.1

for Ep/Es = 100 and 1000. As a0 continues to increase and exceeds the cut-off frequency, the amplitude results from
FEM method decreases in fluctuation while that from energy method steadily decreases. Thus, a small result deviation
between the energymethod and FEM takes place. The amplitude of ϕ at Ep/Es = 1000 from FEM is around 0.32 for a static
condition when s = 5d, which indicates an attenuation of around 45% compared to that from FEM method when s = 2d.
However, that attenuation is no more than 15% if calculated by plane strain method. The evident overestimation for soil
attenuation in plane strainmodel demonstrates that vertical gradient of soil stress plays a significant role in low frequency
range. It is also interesting to observe that the three types of methods tend to yield closer amplitude results among one
another as frequency becomes higher. In Figure 3B, it is shown that the phases from FEM are slightly larger than that
from both energy and plane strain methods. That is, due to the different damping effects for the Rayleigh model in FEM
and hysteretic damping model.24

4.2 Dynamic interaction factor

Figures 4 and 5 depict the variation of pile-to-pile interaction factor χ against frequency in the forms of amplitude and
phase. Both pile and soil parameters are the same with those in Section 4.1. Figure 4A clearly shows that dynamic inter-
action becomes weaker as pile spacing gets farther from s = 2d to s = 10d. Compared with the results from FEM, both
energy and plane strain methods provide satisfactory prediction of interaction factor at the frequency range of a0 > 0.2
when Ep/Es = 1000. At the low frequency range, plane strain method produces slightly more accurate results compared
with that energy method for s = 2d. That is a joint result of two folds. Firstly, the assumption of one-dimensional shaft
for passive piles leads to a natural limitation: dynamic interaction factor is underestimated without taking pile geometry
into account when the passive pile is very close to active pile. Secondly, soil attenuation factor is overestimated in plane
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F IGURE 5 Comparisons of dynamic interaction factor in homogenous soil (Ep/Es = 100). (A) Amplitude. (B) Phase.

strain method, which just provides a compensation for the above-mentioned limitation. Not surprisingly, the deviation
of the plane strain method becomes more evident as the passive pile moves further from active pile, especially for the
static condition. On the contrary, the deviation between energy method and FEM becomes much smaller as pile spacing
s increases for the static condition. At the same time, the phases in Figure 4B from three types of methods agree very well
with one another, which again confirms the efficiency of present method.
In Figure 5A, it can be estimated that the amplitude of dynamic interaction factor fromFEMgenerally reduces by around

25%−50% in the given frequency range when the modulus ratio of Ep/Es decreases from 1000 to 100. For the energy and
plane strain methods, such reduction is around 30%−55% and 15%−50%, respectively. Basically, energy method tends to
impair pile to pile dynamic interaction to some extent while plane strainmethod tends to strengthen dynamic interaction.
From the engineering perspective, a mild impair to dynamic interaction is acceptable (if not anticipated) considering the
following two facts: linearly elastic status is just an extreme case when the external force and soil strain are adequately
small; amplitude of dynamic interaction factor will be suppressed a lot when non-linearity occurs.21

5 COMPARISON ANDMODIFICATION FOR PILES IN LAYERED SOIL

5.1 Soil attenuation factor

In this section, a two-dimensional (2D) model that is symmetric in respect to pile axis is built to investigate the wave
propagation in double-layered pile-soil system through finite element (FE) software Abaqus as shown in Figure 6. The
material assumption and interface settings are the same with those in Section 2. The pile properties are: mass density
ρp 2750 kg/m3; Young’s modulus Ep 25 GPa, Poisson’s ratio 0.1, diameter d = 1.0 m, shaft length L = 20d; unembedded
segment length H0 = 0; soil properties for the first soil layer and the second layer are: mass density ρs1 = 1760 kg/m3 and
ρs2 = 2200 kg/m3, Young’s modulus Es1 = 25 MPa and Es2 = 125 MPa, damping ratio 𝜅1= 0.1 and 𝜅2 = 0.05, Poisson’s ratio
υs1= υs2=0.4. The bottomboundary of soil domain is completely fixed. Infinite elements are introduced to absorb thewave
energy from the reflection of lateral boundary.54,55 Rayleigh damping is used to account for material damping effects in
viscoelastic soil domain, which is a typical simplification done bymany researchers, although its limitation is inmodeling
realistically the energy dissipation due to material damage. Finite element meshing of soil and pile are finely done to
meet the practical rule that the largest element size is not larger than one tenth of the interest wavelength.21 The first two
inherent displacement modes for the pile–soil system in double layer ground on vertical vibration are computed by the
linear perturbation algorithm in Abaqus, which are transformed into 3D contour maps shown in Figure 7. Subsequently,
the two coefficients α and β in Rayleigh damping can be obtainedwith the first two inherent frequenciesω1 andω2 of pile–
soil system by α = 2κω1ω2/(ω1+ω2) and β = 2κ/(ω1+ω2). For comparisons, extra two models of single pile in homogenous
soil are established by replacing the properties of double soil layers with those of solely soil layer 1 and solely soil layer 2,
respectively.
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F IGURE 6 Geometrics and mesh discretization of the two-dimensional (2D) model for layered soil (Ep/Es1 = 1000; Vs1/Vs2 = 0.5; ρp/ρs2
= 1.25; ρs1/ρs2 = 0.8; H1:L = 2:3).

F IGURE 7 The first two inherent modes
of pile–soil system in double-layered ground.
(A) The first inherent mode (ω1 = 9.28 rad/s).
(B) The second inherent mode (ω2 =
13.96 rad/s).
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(A)

(B)

(C)

F IGURE 8 Time-domain displacements at ground level of pile–soil system with different soil profiles on harmonic excitation with
frequency 10 Hz. (A) Layered soil. (B) Homogenous soil layer 1. (C) Homogenous soil layer 2.

A series of vertical harmonic excitations with various frequencies are then applied on the pile top in the form of dis-
placement boundary. Implicit solver with iterative algorithm is employed to calculate the responses of pile–soil system on
each excitation. Figure 8 shows the displacement histories of pile top and ground surface in two-layered soil and homo-
geneous soil models. Obvious time delays between the peak responses of pile and soil are observed in those displacement
histories from Figure 8A to Figure 8C. It is also shown that the time delay of ground vibration in layered soil (Es1 = 25MPa,
Es2 = 125 MPa) is similar with that in homogenous soil layer 1 (Es = 25 MPa) and is greater than those in homogenous soil
layer 2 (Es = 125 MPa).
Based on the time-domain displacement histories of pile and interest soil positions, the amplitude and phase of soil

attenuation factor can be easily interpreted. Figure 9 compares the soil attenuation factors obtained by FEMand the energy
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F IGURE 9 Comparisons of soil attenuation factor produced by FEM and energy method in layered soil profile. Es2/Es1 = 5; Ep/Es1 =
1000. (A) Amplitude. (B) Phase.

F IGURE 10 Displacement [m] contours for single pile in two-layered soil at various points of time (f = 10 Hz). (A) t = 0.0025 s, (B) t =
0.0047 s, (C) t = 0.0094 s.

method through Equation (27) in layered soil. In Figure 9A, it is shown that both those two methods predict one cut-off
frequency around a0 = 0.2. Before the cut-off frequency, the soil attenuation factor from FEM in the absence of soil damp-
ing obtains the similar amplitude to that in the presence of soil damping. As a0 continues to increase, the effects of soil
damping gradually become significant. Consequently, the results from FEM with damping effects prominently decrease
with increasing frequency. Besides that, it appears that the amplitude results from energy method (Equation (27)) have
evident difference with that from FEM with damping especially for the high frequency range. Figure 9B shows that the
phase results from FEM are generally greater than those from energy method, which indicates a larger wave propaga-
tion speed through Equation (27). Also note that the effects of soil damping on the phase are much weaker than that on
the amplitude. Basically, the energy method assumes that the soil attenuation factor keeps invariable along depth, which
brings an artificial constraint for the wave field. In homogenous ground, that assumption would not cause significant
error. In layered ground, however, the wave velocity difference between soil layers leads to non-negligible phase lags,
which amplifies the prediction errors of energy method.
Figures 10–12 plot the evolution of displacement contours for the piles installed in various soil profileswith damping and

subjected to a harmonic excitation of 10Hz. At t= 0.0025 s when pile displacement comes to its peak, the soil displacement
is rather limited shown in Figure 10A. Subsequently at t = 0.0047 s when the displacement at soil position s = 2d has its
peak, the wave front is clearly divided into two segments: the upper one is approximately parallel to pile axis, and the
lower one looks like an arch in Figure 10B. That two-segment division is clearer in Figure 10C at t = 0.0094 s when the
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F IGURE 11 Displacement [m] contours for single pile in homogenous soil layer 1 at various points of time (f = 10 Hz). (A) t = 0.0025 s,
(B) t = 0.0047 s, (C) t = 0.0097 s.

F IGURE 1 2 Displacement [m] contours for single pile in homogenous soil layer 2 at various points of time (f = 10 Hz). (A) t = 0.0025 s,
(B) t = 0.0046 s, (C) t = 0.0095 s.

response at soil position s= 5d comes its peak. By the contrast, the wave fronts of displacement contours for homogeneous
soil shown in Figures 11 and 12 do not show any turn point or have the feature of two-segment division.
According to the above analysis, the energy method in Section 3.1 should be modified to capture more details on the

wave propagation in layered soil.We assume that the depth variation of soil attenuation factor in each homogenous layer is
negligible. It means each soil layer has solely one same soil attenuation factor. An approximatemethod is then proposed to
obtain the soil attenuation factors in different soil layers based on the idea of equivalent substitution. For the surrounding
soil that has N layers, the soil attenuation factor in ith layer (𝜙𝑖) can be approached by that in homogenous soil with its
properties equals the ith layer. In other words, the soil properties of other N-1 layers are replaced with the ith layer to
calculate 𝜙𝑖 . Figures 13 and 14 depict the comparisons of soil attenuation factors at various depths in actual layered soil
and hypothetical homogeneous soil through FEM for s= 2d and s= 5d, respectively. It is shown in Figure 13 that both the
amplitude and phase of the soil attenuation factor from the hypothetical homogeneous soil agree quite well with those
in layered soil at H = 0 m and s = 2d. At the depth of H = 13.33 m or the top of second layer, the approximate method
predicts slightly larger amplitudes than those in layered soil shown in Figure 13A. This reflects that the soil attenuation
in the second layer, to some extent, is influenced by the first layer due to the continuity conditions of displacement and
stress on the interface between adjacent soil layers. Nevertheless, the phase results from approximate method are close
to those in layered soil and the overall deviation for amplitude is not significant even if Es2/Es1 = 5 in Figure 13. Similar
results are observed in Figure 14 for s = 5d. Above analysis confirms that the proposed approximate method can produce
satisfactory results for soil attenuation factor in layered soil.
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(A) (B)

F IGURE 13 Comparisons of soil attenuation factor (s = 2d). (A) Amplitude. (B) Phase.

(A) (B)

F IGURE 14 Comparisons of soil attenuation factor (s = 5d). (A) Amplitude. (B) Phase.

F IGURE 15 Geometrics and mesh
discretization of the three-dimensional (3D)
model for layered soil (Ep/Es1 = 1000; Vs1/Vs2 =
0.5; ρp/ρs2 = 1.25; ρs1/ρs2 = 0.8; H1/L = 2/3).

5.2 Dynamic interaction factor

In the presence of adjacent piles, the whole of piles–soil system is non-axisymmetric. Therefore, a three-dimensional
(3D) model is required to compute the dynamic pile to pile interaction factor as shown in Figure 15. The basic properties
for pile and soil are same with those in Section 4.1. The adjacent passive piles locate the positions off 2d and 5d from
the axis of loaded pile, respectively. C3D8 type elements are used for pile and soil, and a layer of infinite elements is
employed on their periphery. Other settings on load, boundary, damping, and algorithm remains same with the 2D FE
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F IGURE 16 Comparisons of dynamic interaction factor from the present method, plane strain method, and FEM. (A) Real part. (B)
Imaginary part.

model in Section 4.1. Figure 16 compares the real and imaginary results of dynamic interaction factor obtained frompresent
method, plane strain method (Refer to Mylonakis and Gazetas18), and 3D FEM. It is observed in both Figure 16A,B that
those three methods give very close results for the dynamic interaction factor when a0 > 0.4. At low frequency range,
the present method gives slightly smaller dynamic interaction factor than that from FEM at both s = 2d and s = 5d as
shown in Figure 16A. Such underestimationmainly results from the omission of radial displacement in soil domain in the
theoretical framework of energy method (refer to Salgado et al.50). Besides that, compared with the quick decrease of the
real part when a0 < 0.4 indicated by plane strain method, the variation of real part against frequency obtained by FEM
and the present method are milder.

6 RESULTS ANALYSIS AND PARAMETER STUDY ON GROUP EFFICIENCY FACTOR
OF PILE GROUP

In this section, the dynamic impedance of a 2 × 2 pile group is calculated through Equation (43). In order to directly
reflect the influences of pile-to-pile interaction, the dynamic impedance of pile group 𝑘G is divided by the sum of the
static impedances of the individual single piles for producing group efficiency factor 𝜒G, which is written as:

𝜒G =
𝑘G

𝑀𝑀 × 𝐾static
d

(0)
(45)

If the dynamic interaction between piles is not considered, the value of𝜒G should equals 1. Generally, for the static
condition, 𝜒Gis always smaller than 1, which indicates that pile-to-pile interaction suppresses the dynamic impedance
of pile group. For the dynamic condition, the value of𝜒G will varies with frequency. 𝜒G will exceed the value of 1 at
certain frequencies, which indicates that dynamic impedance of the pile group is greater than that of the sum of the
static impedances of individual piles.

6.1 Effects of subsoil layer stiffness

Figures 17, 18, and 19 show the fluctuation of group efficiency factor 𝜒G against frequency for the 2 × 2 fully embedded
pile group on the subsoil layers with various stiffness. It is observed that greater subsoil stiffness brings greater group
efficiency factor at the given frequency range of a0 < 1 in Figure 17A, which is because that improving subsoil stiffness can
significantly increase the dynamic impedance of pile group kG. The real part of𝜒G for Es2 = 40Es1 is around three times
of that for Es2 = Es1 at static condition. When the ratio of Es1:Es2 is larger than 0.25, 𝜒G gradually decreases as frequency
increases while 𝜒G shows a slowly increasing trend when Es1:Es2 is smaller than 0.05. That different trend amplifies the
effects of subsoil layer stiffness on the real part of𝜒G. Figure 17B shows that the imaginary part of 𝜒G increases with
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F IGURE 17 Group efficiency factors for the fully embedded pile group with s = 2d on various subsoil layers. L = 15d; H0 = 0; Ep =
1000Es1; ρp:ρs1:ρs2 = 1.33:1:1; κ1 = κ2. (A) Real part, (B) Imaginary part.

(A) (B)

F IGURE 18 Group efficiency factors for the pile group with s = 5d on various subsoil layers. L = 15d; H0 = 0; Ep = 1000Es1; ρp:ρs1: ρs2 =
1.33:1:1; κ1 = κ2. (A) Real part. (B) Imaginary part.

frequency. In contrast to the real part of𝜒G, the results of imaginary parts for various subsoil stiffness do not behave
prominent difference when pile spacing s equals two times of pile diameter.
Both real part and imaginary part results of group efficiency factor for s = 5d in Figure 18 show obvious fluctuation

with frequency. In Figure 18A, it is observed that the real parts of 𝜒G for various subsoil stiffness increase to their peaks
at a narrow range of frequency from a0 = 0.6 to 0.7. The difference of 𝜒G for various subsoil stiffness initially grows at
0 < a0 < 0.4 and then dramatically falls until 𝜒G comes to its peak around a0 = 0.7. After that, 𝜒G for various subsoil
stiffness reduce with various speed rates as frequency grows and their real part difference increases again. Figure 18B
shows that increasing the subsoil modulus leads to a more significant fluctuation for the imaginary part of 𝜒G, which just
accounts for the sharper growth around the peaks of 𝜒G for the cases of greater subsoil modulus in Figure 18A.
When pile spacing s is 10 times of pile diameter, it is observed that the curves of real part against frequency for various

subsoil stiffness are approximately parallel to each other in Figure 19A. Besides that, both the real and imaginary parts
of 𝜒G in Figure 19 fluctuate faster but flatter with frequency compared with the results for s = 5d. It is also interesting
to observe that increasing pile spacing generally increases the value of 𝜒G and thus improves the work efficiency of pile
group.

6.2 Effects of surface soil layer stiffness

Producing non-dimensional frequency requires shear velocity of soil. Various surface soil stiffnesses lead to various
shear velocities, which causes inconveniences for demonstrating the variation of group efficiency factor 𝜒G using



1972 QU et al.

(A) (B)

F IGURE 19 Group efficiency factors for the pile group with s = 10d on various subsoil layers. L = 15d;H0 = 0; Ep = 1000Es1; ρp:ρs1: ρs2 =
1.33:1:1; κ1 = κ2. (A) Real part. (B) Imaginary part.

(A) (B)

F IGURE 20 Group efficiency factors of pile group for s = 2d in the surface soil layers of various stiffness. L = 20d; H1 = 5d; Ep = 100Es2;
ρp:ρs1: ρs2 = 1.33:1:1; κ1 = κ2. (A) Real part. (b) Imaginary part.

non-dimensional frequency. Thus, the true frequency is used for analysis from this section. Figures 20–22 depict the curves
of group efficiency factor 𝜒Gagainst true frequency for the pile group in double-layered soil. The Young’s modulus of the
surface soil layer Es1 varies from 250 to 25 MPa and the thickness of the surface layer H1 is a constant of 5d. It is observed
in Figure 20A that the real part of 𝜒G has quite limited variation in 0-30 Hz when Es1 = Es2 = 250 MPa or Es1:Es2 = 1:1.
As Es1 decreases, the values of 𝜒G tend to reduce with frequency. That reduction is especially obvious in high-frequency
range (greater than 15 Hz). When Es1 = Es2 = 25 MPa or Es1:Es2 = 0.1:1, the real part of 𝜒G is close to zero at 30 Hz and the
corresponding reduction is around 30% compared with the static case. The gradually increasing imaginary parts of 𝜒G in
Figure 20B explain the reduction of real part at high frequencies for s = 2d.
The group efficiency factor for s = 5d in Figure 21A has its maximum at around 23 Hz when Es1:Es2 = 1:1 and the

corresponding peak value of 𝜒G is around two times (or 200%) of the static efficiency factor. By contrast, when Es1:Es2 =
0.1:1, that increase of 𝜒G from static value to the peak value is only around 80%, which reflects that a reduction of surface
soil stiffness could significantly impair the group efficiency factor. Similar results can be found in Figure 22 for s = 10d. It
is also observed that the effects of surface soil layer stiffness on the imaginary parts of 𝜒G are less prominent than that on
the real parts as shown in Figures 20B, 21B, and 22B.
Furthermore, Figures 23 and 24 depict the influences of the thickness of the surface weak soil on the group efficiency

factor. The Young’s modulus of the surface layer and the soil below it is 100 and 250 MPa, respectively. The thickness
of surface weak soil varies from 2d to 10d. The results in Figure 23A show that increasing the thickness of surface weak
soil could lead to a reduction for the real part of χG. When the thickness of the surface weak soil increases, both kG and
𝐾static
d

(0) decrease. Once the degree of decrease for kG is larger than that for the 𝐾static
d

(0), a reduction is observed for the
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F IGURE 2 1 Group efficiency factors of pile group for s = 5d in the surface soil layers of various stiffness. L = 20d; H1 = 5d; Ep = 100Es2;
ρp:ρs1:ρs2 = 1.33:1:1; κ1 = κ2. (A) Real part. (b) Imaginary part.

(A) (B)

F IGURE 22 Group efficiency factors of pile group for s = 10d in the surface soil layers of various stiffness. L = 20d;H1 = 5d; Ep = 100Es2;
ρp:ρs1:ρs2 = 1.33:1:1; κ1 = κ2. (A) Real part. (b) Imaginary part.

(A) (B)

F IGURE 2 3 Group efficiency factors of pile group for s = 2d in the surface soil layers of various thickness. L = 20d; H0 = 0; Es1: Es2 =
2:5; Ep = 100Es2; ρp:ρs1: ρs2 = 1.33:1:1; κ1 = κ2. (A) Real part. (B) Imaginary part.
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(A) (B)

F IGURE 24 Group efficiency factors of pile group for s = 5d in the surface soil layers of various thickness. L = 20d; H0 = 0; Es1: Es2 =
2:5; Ep = 100Es2; ρp:ρs1:ρs2 = 1.33:1:1; κ1 = κ2. (A) Real part. (B) Imaginary part.

(A) (B)

F IGURE 2 5 Group efficiency factors of the pile group with various unembedded segment lengths for s = 2d. L = 40d; Ep = 100Es2;
ρp:ρs1:ρs2 = 1.33:1:1; κ1 = κ2. (A) Real part. (B) Imaginary part.

group efficiency. The results in Figure 23A indicate that increasing the thickness of the surface weak soil leads to more
reduction for the dynamic impedance of pile group than that for the static impedance of single piles. When s = 2d, that
reduction becomes significant when the excitation frequency exceeds 20 Hz. At the same time, Figure 23B shows that the
thickness variation of surface soil has quite small influence on the imaginary part of χG, which indicates that thickness of
surface soil layer could not cause obvious phase variation.
The results in Figure 24A for s = 5d predict that the peak values of real part of𝜒G occur at the frequencies from 15

to 23 Hz and are around twice compared with their static impedances. Significant reduction of the real part of𝜒G due
to thickness growth is also observed in Figure 24A for s = 5d while the influence on the imaginary part of 𝜒G is overall
small.

6.3 Effects of unembedded segment length

Considering the extreme case that there is no soil around the pile, that is, unembedded segment length equals pile length,
there will no soil–pile interaction happen and thus the group efficiency equals one. Figures 25 and 26 show the effects
of unembedded segment length (H0) on the group efficiency factor for s = 2d and s = 5d, respectively. It is observed in
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F IGURE 26 Group efficiency factors of the pile group with various unembedded segment lengths for s = 5d. L = 40d; Ep = 100Es2;
ρp:ρs1:ρs2 = 1.33:1:1; κ1 = κ2.

Figure 25A that the extension of unembedded pile segment can slightly increase the real part of𝜒G. That increase from 0d
to 8d varies with frequency and it comes to the maximum of around 46% at 20 Hz in given frequency range. Figure 25B
shows that the imaginary part of𝜒G decreases as the unembedded segment length grows, whereas that decrease is limited,
and the level is only 28% even whenH0 = 8d or 20% of the whole pile length. Moreover, it is interesting to note that 𝜒G in
both Figure 25A,B will significantly fall if the stiffness of the surface soil layer is simultaneously reduced for the partially
embedded pile group.
The results for s= 5d in Figure 26 showmore obvious fluctuation of group efficiency factor against frequency compared

with those for s = 2d. Increasing unembedded segment length does not always lead to growth or reduction for 𝜒G when
s= 5d. Both the real part in Figure 26A and the imaginary part in Figure 26B show flatter variationwith frequency as unem-
bedded segment length increases. Besides that, the fall of 𝜒G due to reduction of surface soil stiffness is still prominent as
shown in Figure 26A.

7 CONCLUSIONS AND DISCUSSION

In conventional energy method for pile-soil system, soil attenuation factor is assumed to be depth-independent to exclu-
sively focus on the responses of single piles, which limits the algorithm extension in dynamic domain from single pile
to pile group. This study develops a theoretical model for the dynamic pile-to-pile interaction and group efficiency
factor for the partially embedded pile group in layered soil by combining the energy method and numerical simu-
lations. The present model comprises three steps: solving the dynamic impedance of single pile, obtaining the soil
attenuation factor and the pile-to-pile interaction factor in layered soil, and calculating the dynamic impedance and
the group efficiency factor of pile group. The soil attenuation factor from the present method considers the influences
of pile geometric and pile–soil stiffness ratio. The pile-to-pile interaction factor from this present method is directly
solved through matrix equations, which is quite convenient because it avoids the artificial separation of soil attenu-
ation factor and diffraction function. The effects of subsoil stiffness, surface soil stiffness, and unembedded segment
length on the group efficiency factor of pile group are examined. Based on the results, the following conclusions can be
drawn:

a. In homogeneous soil, the presented energy method gives slightly smoother amplitudes of soil attenuation factor and
dynamic interaction factor at low-frequency range than FEM while plane stain method overestimates the results.
Besides that, energy method is capable to predict the effects of pile geometry and stiffness ratio of pile and soil on
the soil attenuation factor.

b. In layered soil, the phase of waves in each soil layer greatly relies on its stiffness. The soil attenuation factors obtained
by the proposed method can take the wave speed difference in various layers into account, especially for the phase
difference. The dynamic interaction factor produced by this proposed method is slightly reduced at very low frequency
range. From the engineering perspective, the non-linear deformation on the pile–soil interface will significantly impair
pile-to-pile interaction. Thus, the overestimation of pile-to-pile interaction from plane method is not anticipated. This
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present method could give an alternative option to find a suitable dynamic interaction factor at low frequency range
than the plane strain method or FEM in linearly elastic regime.

c. The variation of pile spacing exerts limited influences on group efficiency factor of pile group at the static condition.
The stiffness or real part of the group efficiency factor fluctuates faster but milder with frequency when pile spacing
becomes larger. The obvious reduction at high frequency rangemay be unfavorable to themechanical behavior of piles
for s = 2d. For s = 5d or 10d, the value of group efficiency factor may be close to 1 or even exceeds 1 at some certain
frequencies, which is beneficial to the mechanical performance.

d. The real part of group efficiency factor generally increases with greater subsoil stiffness, greater surface soil stiffness.
That increase varieswith frequency and sometimesmay exceeds 100%. By the contrast, the abovementioned parameters
play a less significant role on the imaginary part of group efficiency factor, especially for s= 2d and s= 10d. The variation
of group efficiency factor against frequency becomes milder as unembedded segment length increases. The combined
effects of longer unembedded segment and weaker surface soil will lead to prominent reduction to group efficiency
factor in common frequency range.
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